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Abstract

We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or

seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at

acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate

maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the

source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data

collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The

direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for

source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the

covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms

have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the

source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers).

Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in

multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the

aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or

seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed sensor networks have been utilized in a wide range of applications; and herein, we consider
surveillance applications. The main purpose of a surveillance sensor network is to monitor an area by
detecting, localizing, tracking, and classifying (DLTC) one or more objects of interest. Such systems are
needed for safeguarding the perimeter and environs of critical structures (e.g., power plants, dams, major
highway crossings), lifelines (e.g., electric, gas, oil transmission lines), and national borders.

In this study, our goal is to detect and to localize (i.e., determine the position of) a near-field source,
generating acoustic and/or seismic wideband signals. Examples of sources possessing the aforementioned
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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attributes are on-foot intruders and terrestrial vehicles. Under normal circumstances, acoustic and seismic
signals from such sources are not detectable over large distances due to their relatively small energy output,
and the geometric and hysteretic (due to material damping) attenuation of this energy within the propagation
medium. At the present time, advances in this particular area are limited, primarily due to lack of experimental
data that help improve and validate feasible methods for detecting, localizing, tracking, and classifying [1].

In order to aid our method development efforts and to validate and to assess the performance of the
developed methods, we utilize data collected during a series of open-field tests. The setup of these tests consisted
of two acoustic arrays (each comprising four closely spaced, omnidirectional, low-cost microphones), and six
triaxial state-of-the-art accelerometers. The sensors were placed on the ground with a typical separation of
15m, and several scenarios were simulated, such as intrusion by vehicles, on-foot personnel, and medium-
intensity impacts on the ground. The acoustic and seismic signals were recorded and time-synchronized with
wireless data acquisition systems. For the present study, we shall only consider the impact sources, to focus the
development efforts for detection and localization of stationary and very wideband sources.

For acoustic source localization, we start from an existing method, dubbed approximate maximum-
likelihood (AML), originally developed for narrowband and relatively wideband sources [2]. Detailed
chronicles of the applications of this method, and of the related/competing methods may be found in Refs.
[2–4,11]. Henceforth referred to as the original approximate maximum likelihood, this method yields the
direction-of-arrival (DOA) of the source signal in the coordinate system of the sensor array. If the direction-
of-arrival data is available from at least two sensor arrays, they can be combined to yield the source location.
Through the use of experimental data, we demonstrate that the original approximate maximum
likelihood method’s accuracy is unsatisfactory (with absolute errors in comparable magnitude to sensor
array separation distances) for very wideband sources. We then present two enhancements to the original
approximate maximum likelihood method that significantly improve the accuracy of estimations (with
absolute estimation errors that are approximately 1m).

For a seismic source, we use data collected at a single triaxial accelerometer to perform direction-of-
arrival estimation. We consider two seismic direction-of-arrival estimation methods. The first method, dubbed
covariance matrix analysis (CMA), is well-developed and has been utilized in long-range and/or high-energy
seismic signal processing [5,6,8,9]. Applications of covariance matrix analysis include processing signals from
tectonic events (i.e., when the sensor and the source are hundreds to thousands of kilometers apart) and in oil
exploration (i.e., when the seismic signal is generated by high-energy explosions). Using short-range, low-
energy field test data, we compare the performance of covariance matrix analysis to a method we develop here,
named surface wave analysis (SWA), which is formulated under the assumption that the source is nearby, and
polarized surface waves dominate the seismic signal.

In what follows, we first provide the details of the original approximate maximum likelihood algorithm and
its necessary enhancements for determination of wideband acoustic source direction-of-arrival in Section 2,
and of the two aforementioned methods for seismic source direction-of-arrival determination in Section 3. We
then present a simple method for event detection in Section 4 that applies to both acoustic and seismic signals;
and subsequently describe a weighted least-squares procedure for source localization using direction-of-
arrival estimations in Section 5. These algorithmic developments are followed by Section 6 where we describe
the field tests, and provide the results yielded by the acoustic and seismic source detection and localization
algorithms. Conclusions is presented in Section 7, and finally acknowledgments is given.

2. AML algorithm for acoustic array direction-of-arrival estimation

As illustrated in Fig. 1, we assume that the sensor array comprises P randomly distributed, omnidirectional
sensors with identical behavior. Each sensor is located at (known) position rp ¼ ½xp; yp�

T with 1pppP;
therefore, the array centroid position is given by

rc ¼
1

P

XP

p¼1

rp ¼ ½xc; yc�
T. (1)

Similarly, we assume that there is a wideband source at the unknown location q ¼ ½X ;Y �T.
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Fig. 1. Sensor and source geometry for the acoustic problem.
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Upon creating a reference coordinate system at the array centroid with axes parallel to x and y, the range rp,
and the angle fp of the pth sensor with respect to the array centroid are given by

rp ¼ krp � rck; tanfp ¼
xp � xc

yp � yc

. (2)

Similarly, the (unknown) range q, and the angle y of the source relative to the coordinate system at the array
centroid can be calculated through

q ¼ kq� rck; tan y ¼
X � xc

Y � yc

. (3)

We use the array centroid as the reference point and define a signal model based on the relative time delays
from this position. To wit, the relative time delay of the signal source is given by

tcp ¼ tc � tp ¼ ½ðxc � xpÞ cos yþ ðyc � ypÞ sin y�=n, (4)

where tc and tp are the absolute time delays from the signal source to the centroid and to the pth sensor,
respectively; and n is the speed of propagation. In a polar coordinate system, the above relative time delay can
also be expressed as

tcp ¼ rp cosðy� fpÞ=n. (5)

We note here that—given the known sensor locations and propagation speed—the relative time delay of the
source is an explicit function of the bearing (azimuth) angle, i.e. tcp ¼ tcpðyÞ. It follows that the data received
by the pth sensor at time t ¼ tn (henceforth, simply denoted by the index n) is given by

spðnÞ ¼ s0ðn� tcpÞ þ zpðnÞ; n ¼ 0; . . . ;N � 1, (6)

where N is the length of the data vector, s0 is the source signal at the array centroid position rc, and zp is the
zero-mean white Gaussian noise with variance s2.

For the ease of derivation and analysis, the received wideband signal can be transformed into the frequency
domain via discrete Fourier transform (DFT), where a narrowband model can be attributed to each frequency
bin.1 By using an N-point discrete Fourier transform transformation (while omitting the unimportant zero
frequency bin and the negative frequency bins that are merely mirror images of the positive frequency bins),
the array data model in the frequency domain is given by

SðkÞ ¼ S0ðkÞDðkÞ þ gðkÞ; k ¼ 1; . . . ;N=2, (7)
1It is well-known that the circular shift property of the discrete Fourier transform has an edge effect problem for the actual linear time

shift. These finite effects become negligible for sufficiently long data. Here, we assume the data length N is large enough to ignore the

artifact caused by the finite data length [2].



ARTICLE IN PRESS
J.Z. Stafsudd et al. / Journal of Sound and Vibration 312 (2008) 74–93 77
where the index k denotes the discrete (positive) frequencies, say ok. In Eq. (7), the scalar S0ðkÞ is the source
spectrum, SðkÞ ¼ ½S1ðkÞ; . . . ;SPðkÞ�

T is the (measured) array data spectrum vector, DðkÞ ¼ ½D1ðkÞ; . . . ;DPðkÞ�
T

is the steering vector with Dp ¼ e�j2pktcp=N , and finally gðkÞ ¼ ½Z1ðkÞ; . . . ; ZPðkÞ�
T is the complex white noise

spectrum vector with a zero-mean Gaussian distribution2 and variance Ns2. Note that, although not explicitly
stated in Eq. (7), the steering vector is a function of the unknown bearing angle, i.e., DðkÞ ¼ Dðy; kÞ.

The probability distribution of the complex Gaussian noise vector g over all the frequencies is given by

PðgÞ ¼
YN=2
k¼1

YP
p¼1

1

s
ffiffiffiffiffiffi
2p
p e�Z

2
pðkÞ=2s

2

¼
YN=2
k¼1

YP
p¼1

1

s
ffiffiffiffiffiffi
2p
p e�ðSpðkÞ�S0ðkÞDpðkÞÞ

2=2s2 . (8)

Thus, the log-likelihood function of the noise vector is

logðPðgÞÞ ¼
XN=2
k¼1

XP

p¼1

logð1=s
ffiffiffiffiffiffi
2p
p
Þ �

1

2s2
ðSpðkÞ � S0ðkÞDpðkÞÞ

2

� �

¼
NP

2
logð1=s

ffiffiffiffiffiffi
2p
p
Þ �

1

2s2
XN=2
k¼1

kSðkÞ � S0ðkÞDðkÞk
2. ð9Þ

After ignoring the irrelevant constant terms, the approximated maximum-likelihood of the source direction-
of-arrival and the source signals is given by

max
H

LðHÞ ¼ max
H
�
XN=2
k¼1

kSðkÞ � S0ðkÞDðkÞk
2

" #

¼ min
H

XN=2
k¼1

kSðkÞ � S0ðkÞDðkÞk
2, ð10Þ

where H � ½y;S0ð1Þ; . . . ;S0ðN=2Þ�
T. This is equivalent to finding

min
½y;S0ðkÞ�

f ðkÞ ¼ min
y;S0ðkÞ½ �

kSðkÞ � S0ðkÞDðkÞk
2 (11)

for all k bins. Noting that the minima of f ðkÞ with respect to the source signal spectrum S0ðkÞ must satisfy the
first-order optimality condition, qf ðkÞ=qS0ðkÞ ¼ 0, the estimate of the source signal spectrum, say S�0ðkÞ, that
yields the minimum residual at the source location is given by

S�0ðkÞ ¼ ½D
H ðkÞDðkÞ��1DHðkÞSðkÞ ¼ DyðkÞSðkÞ, (12)

where the superscript H denotes the complex conjugate transpose operation. Upon defining the orthogonal
projection Pðy; kÞ ¼ DðkÞDyðkÞ, the complementary orthogonal projection becomes P?ðy; kÞ ¼ I� Pðy; kÞ,
where I is a (P� P) identity matrix. By substituting Eq. (12) into Eq. (11), the minimization function becomes

f ðkÞ ¼ kP?ðy; kÞSðkÞk2. (13)

After substituting the estimate of the source signal S�0ðkÞ in Eq. (12), the approximate maximum
likelihood estimate of the source bearing angle y can be obtained by solving

max
y

JðyÞ ¼ min
y

XN=2
k¼1

kP?ðy; kÞSðkÞk2 ¼ max
y

XN=2
k¼1

kPðy; kÞSðkÞk2

¼ max
y

XN=2
k¼1

trðPðy; kÞRðkÞÞ, ð14Þ
2Due to the transformation to the frequency domain, gðkÞ asymptotically approaches a Gaussian distribution by the central limit

theorem even if the actual noise is arbitrary, independent and identically-distributed (with bounded variance) in the time domain. This

asymptotic property in the frequency domain provides a more reliable noise model than the time domain model in some practical cases [2].
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where RðkÞ ¼ SðkÞSH ðkÞ is the one snap-shot covariance matrix. After determining y, the source signal
estimate can be easily obtained through Eq. (12).

The presented AML algorithm estimates the source direction-of-arrival by maximizing the signal-to-noise-
ratio (SNR) in a maximum-likelihood sense. The algorithm has been demonstrated to work very well for
narrowband and relatively wideband sources (e.g., tracked vehicles, music-type sources, bird calls [12]).
However, it has to be modified for a very wideband source. The modifications we describe in the following
subsections are aimed at reducing the computational cost and increasing the signal power for approximate
maximum likelihood estimation—both of which become critical issues when dealing with wideband signals. The
utility of these modifications are subsequently demonstrated through the use of experimental data in Section 6.

2.1. Channel whitening

One of the important assumptions utilized in the development of the approximate maximum like-
lihood algorithm is that of uniformity of the noise spectral density in all of the channels. However, the
background noise is generally non-uniform in the real world. When processing a wideband signal, the noise is
also sampled at a broader frequency range, weakening this assumption. Therefore, a better model of
background noise is necessary. Here, we opt to use channel whitening to reduce the effect of this non-
uniformity. To perform the whitening, we first record the background noise (i.e., when the signal from an
event is not present) and use this data to estimate the average power spectral density (PSD) of the background
noise for each microphone channel. We then use the average power spectral density values to normalize the
data when an event signal is present. The resulting signal is corrupted by ‘‘white noise,’’ and we use it for
approximate maximum likelihood direction-of-arrival estimation instead of the original ‘‘raw’’ data. The
mathematical details of the channel whitening procedure are as follows:

Let us denote the background noise recorded through the pth channel in the time domain as ẑpðnÞ, where
n ¼ f0; 1; . . . ;L� 1g. We divide this signal into B segments with 50% overlap, say ẑi

pðniÞ, where i ¼

f1; 2; . . . ;Bg and

ði � 1Þ � ðL� 1Þ=ðBþ 1Þpnipði þ 1Þ � ðL� 1Þ=ðBþ 1Þ, (15)

where we note that the noise data should be truncated accordingly if its length is such that it cannot be divided
exactly into B sections with 50% overlap. The overlap is necessary to obtain accurate estimates of the power
spectral density of background noise, and 15–75% overlap values usually yield reasonable estimations.
Therefore the particular value of 50% is somewhat arbitrary.

After windowing each segment with a Hamming window, and subsequently performing an N-point discrete
Fourier transform over each channel’s data, we get Ẑi

pðkÞ where k denotes the frequency ok as before
(see, for example, Eq. (7). The average power spectral density of the background noise for each microphone
channel is then

RPSDp ðkÞ ¼
1

B

XB
i¼1

jẐi
pðkÞj

2. (16)

Finally, we divide the complex-valued spectral amplitude (when signal is present) by the square root of the
average noise power at each frequency and for each microphone channel. This yields the whitened version of
the signal in the frequency domain. To wit,

SwhiteðkÞ ¼
S1ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RPSD1 ðkÞ

q ;
S2ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RPSD2 ðkÞ

q ; . . . ;
SPðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RPSDP ðkÞ

q
2
64

3
75. (17)

2.2. Frequency-bin selection

The second difference between the present and the original maximum-likelihood estimation algorithm
is the use of a better frequency bin selection process. This new process is primarily aimed at reducing
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computational cost, but will also improve the accuracy of estimations through proper weighting of
data. To wit, Eq. (14) shows that we have to add the trace of a matrix for N=2 different frequency bins
in order to compute the maximum-likelihood criterion. When the source signal is wideband, with the
appropriate sampling frequency, N may become a large number. Thus, the complexity of the approxi-
mate maximum likelihood algorithm becomes quite high. In order to reduce the complexity, we have to
choose a small subset of N=2 frequency bins, and apply the approximate maximum likelihood algorithm
to that subset. By a proper selection of this subset of frequency bins, we may be able to maintain the
accuracy of approximate maximum likelihood estimation with all data, but now with a much reduced
computational cost.

Let us define a weighted complex amplitude spectra, which is summed over all channels, as the following:

RðkÞ ¼ ck �
XP

p¼1

jSpðkÞj
2, (18)

where, as before, k 2 A � f1; 2; . . . ;N=2g, and thus, A is the full set of frequencies. It is important to note that
the sampling rate of typical acoustic sensors is in the kilo-Hertz range, and thus, processing all frequencies
without discrimination will create a computational bottleneck and render real-time source localization very
difficult, if not impossible, in realistic scenarios. Because it is reasonable to expect that the total spectral
power, i.e.

PA ¼
X
k2A

RðkÞ (19)

is not uniformly distributed among the full set of frequencies (even for a wideband signal) we may choose only
a subset of frequencies for approximate maximum likelihood processing in order to achieve computational
efficiency. In order to choose this subset we first divide the vector . into approximately L2 sub-vectors as in

. ¼ ½Rð1Þ; Rð2Þ; . . . ; RðN=2Þ� ¼ ½B1;B2; . . . ;BL2 �, (20)

where the length of each sub-vector (say Bm) is equal to ð1=LÞ � ceilðN=ð2LÞÞ. We then obtain the global
maximum of each sub-vector as

Bmax
m � maxðBmÞ. (21)

Finally, we choose the L largest of all Bmax
m values, and define the subset of frequencies to be processed as those

belonging to these L bins, and discard the rest. For the experimental data that will be presented in Section 6,
we have used N=2 ¼ 2250, and processed only L ¼ 25 of these that satisfied the selection criterion outlined
above (i.e., we have discarded nearly 1� 25=2250ffi 98:8% of the frequency-domain data). Note that, this
strategy allows the selection of representative frequencies from each bin, and thus, increases computational
efficiency while reducing the possibility of frequencies scattered around a only a few peaks to dominate the
subset.

Another important issue in subset selection is the choice of the weight factors. For wideband signals, more
useful information is generally stored in the higher frequencies simply because they are sampled more
frequently by the sensors. Furthermore, the background noise (e.g., wind noise) is more concentrated in the
low frequencies. Therefore, we choose the weighting parameter in Eq. (18) as ck ¼ o2

k in order to give more
weight to data received in the higher frequencies.

3. Seismic direction-of-arrival estimation with a single triaxial station

Signals from a generic seismic event contain primary and secondary (P and S) body waves, as well as surface
(Rayleigh and Love) waves, with each type of wave exhibiting different frequency content and velocity from
others. In this study, we shall focus on seismic events for which (i) the source and the sensor are separated by
short distances (e.g., a few hundred meters or less), (ii) they both reside on the surface (or near the surface) of
an elastic half-space, and (iii) the source emits a relatively weak signal (as compared to an earthquake) such as
that by travelling or idling vehicles, footsteps, impact and collisions, and even small-yield detonations. Under
these conditions, the Rayleigh and Love waves dominate the signal. Rayleigh wave exhibits a rolling motion in
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the direction of propagation, occupying the vertical direction (the direction perpendicular to the ground)
and the direction of propagation on the ground plane. Love wave produces side-to-side motion perpendicular
to the direction of propagation on the ground plane. The earth acts as a frequency and velocity filter as the
seismic signals propagate. Signals collected by long-range sensors exhibit separation of the P, S, Rayleigh and
Love waves in the frequency domain as well as on the arrival time-line. Short-range seismic signals do not have
the benefit of filtration, and hence the Rayleigh and Love waves arrive at approximately the same time, and
are overlapped in the frequency domain.

In the following subsections we shall consider two alternative methods for determination of
seismic direction-of-arrival using single triaxial station data. The first of these methods is based on
the so-called covariance matrix analysis. This existing method [6] has been devised primarily for spectral
analysis and localization of long-to-medium range, and strong-to-mild events (e.g., earthquakes, nuclear
detonations, oil exploration, etc.). The second method, which we refer to as surface wave analysis, is novel
and is specifically designed for localization of short-range, weak surface events. In what follows, we
first provide the details of these two methods (covariance matrix analysis in Section 3.1, surface wave
analysis in Section 3.2) and later compare their performance using data collected in a suite of field experiments
(Section 6).
3.1. Seismic direction-of-arrival estimation via spectral decomposition of the covariance matrix

The covariance matrix analysis method for seismic direction-of-arrival estimation is based on the spectral
decomposition of the signal covariance matrix [6,7]. We first reproduce its basic formulas here for the
convenience of the reader, and subsequently discuss the use of covariance matrix analysis for seismic
direction-of-arrival estimation.

Consider a time-sampled acceleration signal along x, y, and z directions, collected at a triaxial station and
organized into ðN � 1Þ signal vectors as

sx ¼ ½sxðNoÞ; sxðNo þ 1Þ; . . . ; sxðNo þN � 1Þ�T,

sy ¼ ½syðNoÞ; syðNo þ 1Þ; . . . ; syðNo þN � 1Þ�T,

sz ¼ ½szðNoÞ; szðNo þ 1Þ; . . . ; szðNo þN � 1Þ�T, ð22Þ

where the time indices No and N, respectively, denote the beginning and the extent of a time window, which
contains an event of interest. A simple heuristic ‘‘event-detection’’ algorithm used for determining these
indices is discussed later in Section 4. These vectors form the columns of the ðN � 3Þ the signal matrix
(for each window) given by

S ¼ ½sx sy sz�. (23)

Singular-value decomposition of the signal matrix yields

S ¼ UWVT. (24)

The matrices on the right-hand side of Eq. (24) are given by

U ¼ ½uð1Þ; uð2Þ; uð3Þ�; W ¼ diag½l1; l2; l3�; V ¼ ½vð1Þ; vð2Þ; vð3Þ�, (25)

where scalars li; i 2 f1; 2; 3g denote the square-root of the eigenvalues of the ð3� 3Þ inner product matrix STS;
or equivalently,3 those of the ðN �NÞ outer product matrix SST. Here, we assume that the eigenvalues are
ordered such that

l1pl2pl3. (26)

Correspondingly, the ðN � 1Þ vectors ui, and the ð3� 1Þ vectors vi, are the eigenvectors of the outer product
(SST), and the inner product ðSTSÞ signal matrices, respectively. The inner product of the signal matrix is
3The outer product matrix SST is rank-deficient and its non-zero eigenvalues (of which it has three) are equal to the eigenvalues of STS.
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typically referred to as the cross-energy matrix or the covariance matrix, and can be explicitly stated as

M ¼ STS ¼
XNoþN

n¼No

s2xðnÞ sxðnÞsyðnÞ sxðnÞszðnÞ

syðnÞsxðnÞ s2yðnÞ syðnÞszðnÞ

szðnÞsxðnÞ szðnÞsyðnÞ s2zðnÞ

0
BB@

1
CCA. (27)

The spectral decomposition of the covariance matrix yields its eigenvalues and eigenvectors. To wit,

M ¼ STS ¼ VWUTUWVT ¼ VW2VT. (28)

Each eigenvalue ðl2i Þ corresponds to the average energy of the seismic mode polarized in the direction of its
corresponding eigenvector, vðiÞ. For each eigenvector, an azimuth and a depression angle can be computed
through

ai ¼ tan�1ðv
ðiÞ
2 =v

ðiÞ
1 Þ; gi ¼ tan�1ðv

ðiÞ
3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
ðiÞ
1 v
ðiÞ
1 þ v

ðiÞ
2 v
ðiÞ
2

q
Þ. (29)

The azimuth angle ðaiÞ is defined as the angle measured counter-clockwise from the x-axis on the ground
(i.e., z ¼ 0) plane, whereas the depression angle ðgiÞ is defined as the downwards angle measured from ground
plane.

Rayleigh wave is elliptically polarized and occupy two orthogonal directions. Love wave is rectilinearly
polarized in the direction orthogonal to the direction of propagation. Therefore, if the Rayleigh wave
dominates the energy of the received signal as compared to the Love wave, then the azimuth angle determined
from components of vð3Þ yields the direction-of-arrival estimate. On the other hand, if the Love wave
dominates signal energy, the azimuth angle determined from components of vð3Þ is perpendicular to the
direction-of-arrival. There are two directions that are perpendicular to the particle motion for a Love wave so
the computed azimuth angles have a 180� ambiguity. This ambiguity may be circumvented when direction-of-
arrival estimates from multiple triaxial stations are available (see Section 5).
3.2. Seismic direction-of-arrival estimation via surface wave analysis

Let the vector dðtÞ ¼ ½dxðtÞ; dyðtÞ; dzðtÞ� denote the displacement of a particle at a sensor location.
Rayleigh wave exhibits an elliptical motion in the plane containing the vertical axis (z) and the direction of
propagation (p), whereas Love wave exhibits a rectilinear motion along the direction, say q, perpendicular to
the direction of propagation. Assuming that the direction of propagation lies solely in the ground ðz ¼ 0Þ
plane (i.e., the depression angle is zero) and that this holds for the time interval t 2 ½tk; tN �, the following must
be true

d2
zðtÞ

A2
þ

d2
pðtÞ

B2
¼ 1; dqðtÞ ¼ CZðtÞ; 8t 2 ½tk; tN �, (30)

where dpðtÞ and dqðtÞ denotes the particle displacements along p and q directions; ZðtÞ is a yet unknown
function; and the coefficients A, B and C depend on the energy of the signal. If the time waveform of the ellipse
in the p direction is

dpðtÞ ¼ B sinðtÞ, (31)

then the time waveform of the ellipse in the z direction must be

dzðtÞ ¼ A cosðtÞ. (32)

In other words, the signals in the z and p directions due to a Rayleigh wave are 90� out of phase. The particle
displacements along the p and q directions are related to those along the x and y directions as

dxðtÞ ¼ dpðtÞ cosðaÞ � dqðtÞ sinðaÞ,

dyðtÞ ¼ dpðtÞ sinðaÞ þ dqðtÞ cosðaÞ, ð33Þ
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where a denotes the azimuth angle of the direction of propagation and we have assumed that it remains
constant within the time window t 2 tk; tN½ �. The accelerations along the x and y directions are then,

sxðtÞ ¼ €dxðtÞ ¼ �dpðtÞ cosðaÞ � C €ZðtÞ sinðaÞ,

syðtÞ ¼ €dyðtÞ ¼ �dpðtÞ sinðaÞ þ C €ZðtÞ cosðaÞ, ð34Þ

where the ‘‘double dots’’ denote the time derivative q2ð	Þ=qt2, and we have made use of the equivalency
€dp ¼ �dp (cf. Eq. (31)). Similarly, the velocity along the z direction is

vzðtÞ ¼ _dzðtÞ ¼ �A sinðtÞ ¼ �ðA=BÞdpðtÞ. (35)

Therefore, except for the presence of the terms €ZðtÞ in Eq. (34), this velocity signal is in-phase with, and
proportional to the acceleration signals sx, and sy. The product of these terms yields

vzðtÞ � sxðtÞ ¼ ðA=BÞd2
pðtÞ cosðaÞ � ðAC=BÞdpðtÞ€ZðtÞ sinðaÞ,

vzðtÞ � syðtÞ ¼ ðA=BÞd2
pðtÞ sinðaÞ þ ðAC=BÞdpðtÞ€ZðtÞ cosðaÞ. ð36Þ

Here, we shall assume that the particle motion along p and q directions are uncorrelated. Consequently, if an
average or an integral (over time) of Eq. (36) is carried out, then the contribution of the second terms will be
negligible as compared to the first terms on the right-hand side of Eq. (36). As such, the ratio of these integrals
provide a means to estimate the azimuth angle a.

Based on this premise, we organize the acceleration data collected at a triaxial sensor into ðN � 1Þ arrays sx,
sy, and sz where N denotes the extent of the time window that contains an event of interest. Numerical
integration of the array sz (e.g., by using Simpson’s Rule) yields the velocity array vz. It follows from the
previous discussion that we can compute two correlation coefficients as,

rzx � vz 	 sx; rzy � vz 	 sy. (37)

The ratio of these coefficients yields the tangent of the azimuth angle of propagation direction. To wit,

a ¼ tan�1
rzx

rzy

 !
. (38)

Note that, in deriving this equation, we have presumed the ideal situation where the triaxial sensor is inserted
in such a way that no leakage exists between the z direction and the ground plane (i.e., all the motion in the
vertical direction is due to the Rayleigh wave) and that the Rayleigh wave energy is dominant. As it will be
demonstrated with experimental data in Section 6, these assumptions are quite accurate for impact-generated
signals from near-field sources located in the ground plane.
4. Seismic and acoustic event detection

In the field, many events can contribute to seismic and acoustic readings. To accurately determine direction-
of-arrival and locate the source of an event of interest, discriminating against other interfering sources is
important. With short-range seismic and acoustic signals, we can assume high signal-to-noise-ratio, and that
most of the energy contained in the signal belong to the event of interest.

For seismic event detection, time-sampled acceleration signal in x, y, and z directions are organized into
column vectors as shown in Eq. (22). The simple scheme developed for event detection involves first dividing
the collected record into time windows of N samples where an event can be well-contained. A sample
covariance matrix is formed from zero-mean data at each window. The eigenvalues of the sample covariance
matrix as a function of window number gives an indication of the signal energy contained in each window as a
function of time. The magnitude of the eigenvalues of each sample covariance matrix is a good indicator of the
presence of a seismic event of interest. This simple process can be performed on sliding time windows across
the entire data record. Because of the lower sampling rate, a plot of the three eigenvalues as a function of time
suppresses the temporal details of the raw waveforms while heightening the sensitivity to a waveform that is
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coherent in all three channels. The same strategy outlined here for seismic event detection can also be applied
to acoustic data to determine the presence of an acoustic event.

5. Source localization using direction-of-arrival estimates

The estimated seismic or acoustic direction-of-arrivals for a given source can be combined to obtain its
location. We begin by defining the distance (‘p) between an arbitrary point, r ¼ ½x; y�T, in the ground plane,
and the line formed by the estimated direction-of-arrival at the pth ð1pppPÞ seismic or acoustic sensor as
illustrated in Fig. 2.

The pth sensor is located at rp ¼ ½xp; yp�
T, and the unit vector perpendicular to the estimated direction-of-

arrival is np ¼ ½� sinðapÞ; cosðapÞ�
T. Therefore,

‘pðrÞ ¼ np 	 ðrp � rÞ; or equivalently,

‘pðx; yÞ ¼ ðyp � yÞ cosðapÞ � ðxp � xÞ sinðapÞ. ð39Þ

Then, we define the objective to be the determination of the point in the ground plane, say r� ¼ ½x�; y��T, that
is closest—with respect to some proper metric—to lines formed by the estimated direction-of-arrivals at all
sensors using the ‘p’s defined in Eq. (39). For the said purpose we first define the vector,

‘ðrÞ ¼ ½‘1ðrÞ; ‘2ðrÞ; . . . ; ‘PðrÞ�
T (40)

and the weighting matrix

WðrÞ ¼ diag½w1ðrÞ;w2ðrÞ; . . . ;wPðrÞ�
T (41)

each component of which is defined as the product of the uncertainty in the estimated direction-of-arrival (sp)
and the distance between the sensor location (rp) and the point r, i.e.,

wpðrÞ ¼ sp � krp � rkL2
. (42)

Note that, the value of each weight ðwpÞ is the small-angle approximation of an arc-length swept by the angle
sp of a circle with radius krp � rkL2

centered the sensor location ðrpÞ. Using the inverse of the weights, we can
define the weighted vector

~‘ðrÞ �W�1‘. (43)

In doing so, we are essentially assigning less weight to a sensor that bears a more uncertain direction-of-
arrival and to a sensor that is located further from the source. For a non-weighted source location estimation,
the matrix W may simply be set to identity. Note that, W becomes singular for the pathologic case when the
source is collocated with a sensor (i.e., rp ¼ r). However, the acceleration or sound data (hence the estimated
direction-of-arrival) for such a sensor would be useless and could easily be eliminated by placing a simple
Fig. 2. Seismic source localization using DOA estimates.
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threshold on the peak acceleration or the sound volume value (we could then conclude that either the source is
very near the sensor p, and thus, its location will be known without direction-of-arrival estimations, or the
sensor is compromised/out-of-order).

Consequently, the source location can be determined by solving the following unconstrained minimization
problem:

min
r
k~‘ðrÞkLa

, (44)

where La is a properly chosen vector norm. Here, we shall consider the L1 and L2 norms in solving this
minimization problem. Each approach has distinct advantages: the L2 norm criterion is known to be more
robust in the presence of noise (i.e., measurement errors); whereas the L1 norm criterion is generally more
robust when outliers are present (i.e., when the estimated direction-of-arrival at some sensors are highly
inaccurate). The source location estimations of these two approaches are compared using experimental data in
the following section.
6. Experimental studies

We have conducted a series of seismic and acoustic open-field tests at Garner Valley, California
(33 40:1240N, 116 40:3760W), which is free of urban noise. Soils at this site are primarily soft clays, silts, and
sands to 17m, decomposed granite from 17 to 50m, and hard granite below 50m. Water table varies
seasonally from 0 (surface) to 4m depth. Although no specific measurement were taken, we expect that the
water table was nearly at its lowest during the time of testing (month of August). As displayed in Fig. 3, six
seismic sensors (accelerometers) were placed with approximately 15.24m (50 ft) separation in a rectangular
array on the ground level, and two acoustic arrays were placed near the center points of the upper-right and
lower-left quadrants of the 30:48m� 30:48m testing grid.

Each accelerometer was a triaxial, force-balanced Kinemetrics Episensor. The seismic data was acquired,
digitized, GPS time-stamped, and relayed (via wireless telemetry) to a mobile data recording station using
Kinemetrics Quanterra Q330 data-loggers (for further information about this equipment, see Ref. [10]). Each
acoustic array consisted of four omni-directional Behringer XM2000S microphones. These microphones
were held in place at the top vertices of a simple ð1:0m� 1:0m� 0:5mÞ scaffold made of PVC pipes. The
acoustic data collected by the eight microphones were acquired and time-synchronized with a Presonus
Fig. 3. Set up for the ‘‘hammering experiment.’’ Acoustic arrays are labelled as a1, and a2; triaxial seismic sensors are labelled as s1–s6; and

the (hammer) sources are labelled as h1, and h2. The individual sensors of the two acoustic arrays are shown on the right.
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Firepod (8-channel microphone/pre-amp) recording system, and were relayed to a PC. The seismic and
acoustic data were sampled at 200Hz and 44.1 kHz rates, respectively.

Source signals were generated by striking a heavy metal plate with a hammer at two distinct locations, as
illustrated Fig. 3. Because they were produced by an impact, the acoustic and the seismic source signals were
both wideband. In Experiments I and II, the sources (labelled as h1, and h2 in Fig. 3) were located outside and
inside the perimeter of the seismic array, respectively. For each experiment, a series of six vertical strikes
(in approximately two second intervals) were made. An example of the recorded signals is shown in Fig. 4.

6.1. Event detection studies

In this section, we demonstrate the event detection algorithm previously described in Section 4. Event
detection algorithms are necessary for automatic processing of collected data. In the absence of an automatic
event detection algorithm, the analyst has to make a judgment on the location of an event, and the size of the
window of time-domain data to be processed by the localization algorithms.

The applications of the event detection algorithm to acoustic and seismic time-domain data are similar; and
here, we demonstrate it for seismic data collected at sensor 1 during Experiment I. In the present study, we
used sliding windows of N ¼ 50 samples with 25 samples overlapping between successive windows. Fig. 5
shows the plot of eigenvalues of the sample covariance matrices as a function of window number. It is evident
from this figure that the six significant hammer strikes in the data are contained in windows where l3 are
above 10�4. Data from these windows are used to estimate source direction-of-arrival’s via seismic (covariance
matrix analysis, surface Fourier transform) and acoustic (approximate maximum likelihood) localization
algorithms.

6.2. Acoustic direction-of-arrival results

The acoustic signals from the six hammer strikes are wideband, and thus, their spectra are non-uniform.
Therefore, the previously mentioned enhancements to the basic AML method, namely frequency-bin
weighting and channel whitening, must be employed.

The strike signals were identified using the previously outlined event detection algorithm. The channel
whitening operation is performed on these detected strike signals using the noise power spectrum collected
during the quiet periods (in the absence of hammering). For example, Figs. 6 and 7 display, respectively, the
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time and frequency domain data collected at the two acoustic array for Experiment I, strike 3. Fig. 8 displays
the power spectral density of the recorded background noise for both arrays, and the spectra of the whitened
signals are given in Fig. 9. As expected, the power spectral density of the received strike signal after whitening
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is more uniform than it was before whitening. We observed the same for all other strikes including those in
Experiment II. The whitened signals were processed through the approximate maximum likelihood algorithms
enhanced with frequency-bin weighting to estimate the source locations for both experiments. As there are
only two acoustic arrays, the AML algorithm yields a single direction-of-arrival estimation for each array.
Therefore, the source location estimation from direction-of-arrival data is trivial (the source location simply
lies at the intersection of the two direction-of-arrival estimates), and the least-squares procedure mentioned in
Section 5 becomes unnecessary.

The utility of the channel whitening and frequency-bin weighting enhancements are illustrated by the source
location estimates for Experiment I strike 3 provided in Table 1. As these results indicate, the approximate
maximum likelihood algorithm enhanced with channel whitening and frequency-bin weighting yields the best
estimates. The same is true for all other strikes, including those for Experiment II (these results are omitted
for brevity).

The source location estimates and their absolute errors for all strikes are given in Table 2. As these results
indicate, several strikes yielded source location estimates with quite large absolute errors, such as strikes 4 and
6 in Experiment I, and strike 6 in Experiment II. The effect of these outliers can be diminished if the median of
estimations for successive strikes are used instead of their average value. This approach is quite feasible in
practical situations were a target/source is stationary. For moving targets, which are out of the scope of the
present investigation, a more sophisticated procedure may be necessary.

6.3. Seismic direction-of-arrival estimation via covariance matrix analysis

Results of the direction-of-arrival estimation via covariance matrix analysis for both experiments (I and II)
are plotted in Fig. 10, and tabulated in Table 3. Again, sp denotes the variance in the estimated direction-of-
arrival at sensor p. Since there were six hammer strikes performed at the same location, the algorithm
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estimates six direction-of-arrivals (i.e., one for each strike). The final estimated direction-of-arrival at sensor p

is the average of these six estimated direction-of-arrivals. The variance of these six estimates is sp.
Note that the directions defined with the covariance matrix analysis have a 180o ambiguity. The directions

found at sensor 1 in Experiment I and at sensor 3 in Experiment II appears to be orthogonal to the directions
of the two sources. Therefore, it is reasonable to conclude that the data collected at these sensors have more
energy belonging to the Love wave than the Rayleigh wave. As such, the directions picked by these sensors are
due to Love waves, which is perpendicular to the propagation direction. In addition to the 180o ambiguity,
this is an apparent weakness of the covariance matrix analysis approach.

6.4. Seismic direction-of-arrival estimation via surface wave analysis

Results of the direction-of-arrival estimation via SWA for both experiments (I and II) are plotted in Fig. 11,
and tabulated in Table 4. Unlike what is observed via covariance matrix analysis, we can see that directions
found at all sensors are pointed approximately in the direction of the source. We also observe that the
direction-of-arrival’s in Experiment II are more accurate than those in Experiment I with less variation
between events. This may be due to the fact that the source is closer to the sensors in Experiment II, and hence
the collected data have larger signal-to-noise-ratio.

6.5. Seismic source localization results

Using the seismic direction-of-arrival estimations provided in Sections 6.3 and 6.4, we performed both
weighted and un-weighted L2 and L1 optimizations to obtain source locations for the two experiments.
Tabulated in Table 5, these results indicate that the weighted versions of both L2 and L1 norm criteria
performed better than their un-weighted counterparts in all cases for direction-of-arrivals obtained from both
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Table 1

Estimated source coordinates (m) via the enhanced AML algorithm using acoustic data (CW: channel whitening, FBW: frequency bin

weighting)

Exp., strike True coord. Est. ðx; yÞ, and [abs. error] per AML enhancement

ðx; yÞ None CW FBW CWþ FBW

I, 3 (22.9, 7.6) (35.8, 15.8) (30.9, 13.3) (12.4, 4.6) (23.9, 7.3)

[15.3] [9.8] [10.9] [1.1]

II, 5 (7.6, 22.9) (13.3, 36.7) (9.2, 34.4) (7.0, 16.2) (7.1, 24.3)

[15.0] [11.6] [6.7] [1.5]

Table 2

Source coordinate estimates and their absolute errors (m) obtained using acoustic AML method

Exp., coord. Strike number Avg. Med. True s

{1 2 3 4 5 6}

I, x 24.5 24.2 23.9 16.2 21.2 18.6 21.4 22.5 22.9 3.4

I, y 6.9 6.0 7.3 21.4 9.6 15.6 11.1 8.4 7.6 6.1

I, err. 1.8 2.1 1.1 15.3 2.6 9.1 3.8 0.9* 0.0 5.7

II, x 7.2 7.8 10.6 9.4 7.1 13.7 9.3 8.6 7.6 2.5

II, y 20.7 26.0 22.1 22.7 24.3 14.0 21.6 22.4 22.9 4.2

II, err. 2.2 3.1 3.1 1.8 1.5 10.8 2.1 1.1* 0.0 3.5
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Table 3

Azimuth angles (deg.) obtained using CMA method

Exp., sensor Strike number Avg. sp

{1 2 3 4 5 6}

I, s1 �87 80 69 �47 79 69 27.2 74.36

I, s2 �68 �74 �78 �67 �82 �86 �75.9 7.51

I, s3 25 29 59 44 56 64 46.3 16.23

I, s4 3.1 5.0 4.2 �1.9 4.9 9.8 4.18 3.76

I, s5 �35 �34 �31 �40 �30 �28 �33.0 4.29

I, s6 52 52 52 48 53 53 51.7 1.71

II, s1 �23 �27 �26 �26 �26 �27 �26.0 1.33

II, s2 57 57 60 59 58 59 58.4 1.02

II, s3 �77 �80 �63 �61 �42 �68 �65.0 13.8

II, s4 48 48 49 49 49 49 48.71 0.39

II, s5 �30 �35 �36 �40 �37 �37 �35.6 3.31

II, s6 �11 �16 �16 �14 �18 �11 �14.4 2.80
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Table 4

Azimuth angles (deg.) obtained using SWA method

Exp., sensor Strike number Avg. sp

{1 2 3 4 5 6}

I, s1 �36 �35 �35 �40 �34 �34 �35.7 2.23

I, s2 �68 �71 �80 �67 �78 �80 �74.0 5.99

I, s3 �105 �105 �100 �110 �97 �99 �102.7 4.82

I, s4 �5 �6 �15 �10 �11 �15 �10.5 4.36

I, s5 �34 �37 �42 �36 �36 �38 �37.3 2.66

I, s6 �131 �130 �130 �132 �128 �128 �129.7 1.66

II, s1 �38 �39 �37 �38 �36 �35 �37.0 1.48

II, s2 �119 �119 �116 �116 �118 �115 �117.3 1.49

II, s3 �153 �154 �151 �157 �156 �149 �153.5 3.17

II, s4 47 48 48 48 48 48 47.7 0.38

II, s5 142 142 141 141 140 142 141.2 0.88

II, s6 165 167 168 168 167 169 167.1 1.47

Table 5

Seismic source localization results (m) using different least-squares criteria

Exp., method True coord. Est. ðx; yÞ, and [abs. error] per least-squares criteria

ðx�; y�Þ L2 Wt. L2 L1 Wt. L1

I, CMA (22.9, 7.6) (18.0, 19.6) (26.0, 9.7) (18.7, 16.6) (25.3, 8.7)

[13.0] [3.7] [9.9] [2.6]

I, SWA (22.9, 7.6) (24.5, 9.8) (24.8, 8.4) (26.0, 10.4) (24.6, 8.1)

[2.7] [2.1] [4.2] [1.8��

II, CMA (7.6, 22.9) (16.0, 24.3) (9.4, 24.8) (11.7, 24.8) (9.5, 25.9)

[8.5] [2.6] [4.5] [3.6]

II, SWA (7.6, 22.9) (9.1, 21.2) (8.4, 23.6) (9.5, 20.0) (8.2, 24.3)

[2.3] [1.1�� [3.5] [1.5]
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the covariance matrix analysis and surface wave analysis. Weighting appears to have significantly improved
the source localization results using direction-of-arrivals from covariance matrix analysis. For both covariance
matrix analysis and surface wave analysis, the weighted L1 norm performed better in Experiment I where the
estimated direction-of-arrivals had larger variances; while the weighted L2 norm performed better in
Experiment II where the estimated direction-of-arrivals were more reliable. These observed behaviors are in
line with the known features of the L1 and L2 criteria.

6.6. A basic fusion of acoustic and seismic localization results

Simultaneous use of acoustic and seismic sensor arrays for source localization has several potential benefits.
To wit, seismic and acoustic signals are propagated through different media (air and ground), therefore they
are not necessarily vulnerable to identical complications. This potentially enhances the robustness of
estimations. For example, acoustic arrays and the source may not have a direct line-of-sight, and intervening
objects or nearby reflective surfaces (causing echoes) may lead to inaccurate location estimates through the use
of acoustic data. Additionally, weather conditions (such as intense wind) may severely reduce the signal-to-
noise-ratio in acoustic data. Seismic arrays are generally insensitive to such mishaps. Conversely, the source
may not impart sufficient energy into the ground while at the same time it may be audible (such as an idling
stationary terrestrial vehicle, a low-flying aerial vehicle, or a fired hand-held weapon). Whatever the
combinations of such circumstances are, an analyst may still be capable of making accurate, albeit ad hoc,
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estimations of the source location if she/he is provided with all available results from acoustic and seismic
arrays. Furthermore, if both acoustic and seismic results are reliable, they can be combined/fused statistically
to increase the accuracy of location estimates. While an advanced study of fusion is out of the scope of the
present study, we shall make a very basic attempt here.

We have noted that surface wave analysis approach is generally superior to covariance matrix analysis for
seismic source localization. So, we shall use the direction-of-arrival estimations via surface wave analysis for
fusion. Furthermore, we have noted that when the source location is outside the perimeter of the seismic array
(as in Experiment I), the weighted L1 criterion is superior to the weighted L2 criterion, while the converse is
true when the source location is inside the perimeter of the seismic array (as in Experiment II). Armed with
these, we shall use the surface wave analysis results processed with weighted L1 and L2 criteria for Experiments
I and II, respectively, for fusion (these particular results were marked with an asterisk symbol in Table 5). The
utility of the aforementioned weighting schemes is the reduction of the influence of outliers. For acoustic
signals, the influence of the outliers can be reduced by using the median rather than the average estimations
(as there were only two acoustic arrays and the least-squares procedures could not be used). Therefore, we
shall use the median acoustic approximate maximum likelihood results (these particular results were marked
with an asterisk symbol in Table 2).

These ‘‘best’’ estimations are reproduced in Table 6 along with a simple average of their values. An
inspection of the average (fused) results indicates that the absolute estimation error for Experiments I and II
are 0.85 and 0.95m, respectively. These final results are more accurate than the best estimates of both the
surface wave analysis and the enhanced approximate maximum likelihood methods. Given the potential
inaccuracies in field measurements and inappropriate sensor placement/alignment, the fused results are
remarkably accurate. On a final note, an alternative approach for fusion would have been to use the acoustic
and seismic DOA results in a combined least-squares estimation. We defer this study and consideration of
other, more advanced, approaches for data fusion to a subsequent study.

7. Summary and conclusions

We have described several methods for localization of acoustic and seismic wideband sources. For acoustic
source localization, we have enhanced an approximate maximum-likelihood method, originally devised for
narrowband and relatively wideband sources, via frequency bin weighting and channel whitening operations.
For seismic sources, we have considered an existing method, dubbed covariance matrix analysis that was
originally devised for long-range detection and localization, and a new method, which we named surface wave
analysis surface wave analysis. Each of the aforementioned methods yields the direction-of-arrival of the
source signals. We have devised several weighted least-squares methods that combine the direction-of-arrival
estimates and yield the source location.

Using experimental data, we have compared the performance of the original and the enhanced approximate
maximum likelihood algorithms, of the covariance matrix analysis and surface wave analysis algorithms, and
of the various weighted least-squares schemes. The results indicated that the enhanced approximate maximum
likelihood and the surface wave analysis algorithms, which were developed in the present study, are more
accurate than the basic (original) approximate maximum likelihood and the covariance matrix analysis
algorithms, respectively. Further, we have observed that the weighted L1 and the weighted L2 norm criteria—
which are used for obtaining source location estimations from direction-of-arrival estimations—yield better
results when the source was placed outside and inside of the sensor array perimeter, respectively. We have also
Table 6

Best seismic and acoustic source localization results and their average

Exp. True coords. Localization method Average

ðx; yÞ Seismic Acoustic

I (22.9, 7.6) (24.6, 8.1) (22.5, 8.4) (23.5, 8.2)

II (7.6, 22.9) (8.4, 23.6) (8.6, 22.4) (8.5, 23.0)
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attempted a basic fusion of acoustic and seismic source localization results to improve the accuracy of
estimations. Fused results had less than 1m of absolute estimation error for all of the (two) experiments
performed; and the accuracy afforded by fusion was better than those of the individual acoustic and seismic
methods.

We note here that the computer implementation of the presented algorithms have not been optimized for
speed. Nevertheless, it takes only a few seconds to carry out the processing of Eq. (14) using a laptop with a
1.6GHz processor. A similar time is required for seismic localization via, for example, the processing of
Eqs. (38) and (44). Therefore, it appears that these methods are ultimately amenable for near real-time
localization.

Experiments—other than those presented in this study—involving moving vehicles and human footsteps
were also conducted. However, an investigation of these experiments are deferred to a sequel, as the processing
of such data is likely to require new algorithms, or extensions/enhancements of those presented in this study.
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